简单的协同过滤 上面的简单的过滤方法其实存在很多问题,例如不基于流行度来进行规范或不考虑评级。 只考虑用户喜欢的类型 许多推荐系统融合了协同过滤和基于内容的方法,对于特定用户,哪些类型的评分高于平均水平?用它来评分类似的电影: 分析: 1. … 继续阅读 Neo4j 做推荐 (9)—— 协同过滤(人群的智慧)
标签: Neo4j
Neo4j 做推荐 (7)—— 基于内容的相似度量标准
相似度量是用于生成个性化推荐的重要组件,这些推荐允许我们量化两个项目的相似程度(或者我们稍后会看到,两个用户偏好的相似程度)。 Jaccard指数是0到1之间的数字,表示两组的相似程度。 两个相同集合的Jaccard指数是1. 如果两个集合 … 继续阅读 Neo4j 做推荐 (7)—— 基于内容的相似度量标准
Neo4j 做推荐 (6)—— 加权内容算法
除了考虑计算相似性的类型之外,还有更多的特征,如演员和导演。让我们使用加权总和根据他们共同的演员、流派和导演的数量对建议进行评分,以提高分数。根据重叠特征的数量和类型计算加权和: 分析: 首先把movie选择出来 把相同流派的电影找出来,并 … 继续阅读 Neo4j 做推荐 (6)—— 加权内容算法
Neo4j 做推荐 (5)—— 基于类型的个性化建议
如果我们知道用户看过了哪些电影,我们可以使用此信息来推荐类似的电影: 返回结果如下: 分析: 确定用户Angelica 找出用户评过分的电影m 把被评分的电影的流派找出来(g:Genre) 通过流派g再返回去搜索属于该流派的电影 (rec: … 继续阅读 Neo4j 做推荐 (5)—— 基于类型的个性化建议
Neo4j 做推荐 (4)—— 基于内容的过滤(续)
Neo4j 做推荐 (2)—— 基于内容的过滤 前文只是简单描述了内容过滤的概念和简单演示。 在此,我们将从具体实例来介绍如何使用基于内容的过滤方法来给用户推荐电影。 首先,基于共同类型的相似性,如果用户看过《Inception … 继续阅读 Neo4j 做推荐 (4)—— 基于内容的过滤(续)
Neo4j 做推荐 (3)—— 协同过滤
协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息 执行结果是: 分析: 此Cypher 语句的意思是:找出对电影《Crimson Tide》 进行过评分的用户,还对哪些电影进行过评分?并对这些被评分的电影,进 … 继续阅读 Neo4j 做推荐 (3)—— 协同过滤
Neo4j 做推荐 (2)—— 基于内容的过滤
基于内容的过滤(Content-based filtering):该技术通过比较商品之间的相似性或者相关性进行推荐。这种方式忽略用户的购买行为,只考虑商品之间的相似关系。 运行结果如下图: 分析: Cypher 语句的意思是:找出25条记录 … 继续阅读 Neo4j 做推荐 (2)—— 基于内容的过滤
Neo4j 做推荐 (1)—— 基础数据
Neo4j 提供了sandbox,开始可以使用3天,到期后可以续7天。只需要注册一个账号即可。 Neo4j Graph Platform – The Leader in Graph Databases 登录后,点击Sandbox,可以创建电 … 继续阅读 Neo4j 做推荐 (1)—— 基础数据