第一本推荐的是O’Reilly的《图数据库》 《图数据库》 本书系统地介绍了图数据库的历史由来、建模方法、工作原理和一些真实的用户用例,详细地说明了图数据解决的是什么样的问题,并以Neo4j数据库和Cypher查询语言为例,阐述了图数据库的 … 继续阅读 推荐几本图数据库-Neo4j 的书给你
分类: Neo4j
Neo4j是一个高性能的NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。
图数据库neo4j应用场景
欺诈检测和分析解决方案: 在欺诈者和犯罪分子造成持久性损害之前,实时分析数据关系对于发现欺诈戒指和其他复杂诈骗至关重要。 查询:反洗钱(AML),电子商务欺诈,第一方银行欺诈,保险欺诈,链接分析见解决方案→ 知识图: 利用基于图形的搜索工具 … 继续阅读 图数据库neo4j应用场景
Neo4j 做推荐 (8)—— 协同过滤(利用电影评级)
协同过滤: 使用网络中其他用户的首选项,评级和操作来查找要推荐的项目。 (买这个东西的用户,还买了那个东西) 用户Misty Williams的所有评分 查找Misty的平均评分: 哪些是Misty 评分超过平均分的电影: 由此,通过计算M … 继续阅读 Neo4j 做推荐 (8)—— 协同过滤(利用电影评级)
Neo4j 做推荐 (12)—— 协同过滤(基于邻域的推荐)
kNN——K近邻 现在我们有了一种基于偏好查找类似用户的方法,下一步是允许每个k个最相似的用户投票选择应该推荐的项目。 主要有: &n … 继续阅读 Neo4j 做推荐 (12)—— 协同过滤(基于邻域的推荐)
Neo4j 做推荐 (11)—— 协同过滤(余弦相似度)
余弦距离: Jaacard相似度对于比较电影很有用,实际上是比较两组(类型、演员、导演等)。但是对于电影评级,每个关系都有一个我们可以考虑的权重。 余弦相似度: 两个用户的余弦相似度将告诉我们两个用户对电影的偏好有多相似。具有高余弦相似度的 … 继续阅读 Neo4j 做推荐 (11)—— 协同过滤(余弦相似度)
Neo4j 做推荐 (10)—— 协同过滤(皮尔逊相似性)
皮尔逊相似性或皮尔逊相关性是我们可以使用的另一种相似度量。这特别适合产品推荐,因为它考虑到不同用户将具有不同的平均评分这一事实:平均而言,一些用户倾向于给出比其他用户更高的评分。由于皮尔逊相似性考虑了均值的差异,因此该指标将解释这些差异。 … 继续阅读 Neo4j 做推荐 (10)—— 协同过滤(皮尔逊相似性)
Neo4j 做推荐 (9)—— 协同过滤(人群的智慧)
简单的协同过滤 上面的简单的过滤方法其实存在很多问题,例如不基于流行度来进行规范或不考虑评级。 只考虑用户喜欢的类型 许多推荐系统融合了协同过滤和基于内容的方法,对于特定用户,哪些类型的评分高于平均水平?用它来评分类似的电影: 分析: 1. … 继续阅读 Neo4j 做推荐 (9)—— 协同过滤(人群的智慧)
Neo4j 做推荐 (7)—— 基于内容的相似度量标准
相似度量是用于生成个性化推荐的重要组件,这些推荐允许我们量化两个项目的相似程度(或者我们稍后会看到,两个用户偏好的相似程度)。 Jaccard指数是0到1之间的数字,表示两组的相似程度。 两个相同集合的Jaccard指数是1. 如果两个集合 … 继续阅读 Neo4j 做推荐 (7)—— 基于内容的相似度量标准
Neo4j 做推荐 (6)—— 加权内容算法
除了考虑计算相似性的类型之外,还有更多的特征,如演员和导演。让我们使用加权总和根据他们共同的演员、流派和导演的数量对建议进行评分,以提高分数。根据重叠特征的数量和类型计算加权和: 分析: 首先把movie选择出来 把相同流派的电影找出来,并 … 继续阅读 Neo4j 做推荐 (6)—— 加权内容算法
Neo4j 做推荐 (5)—— 基于类型的个性化建议
如果我们知道用户看过了哪些电影,我们可以使用此信息来推荐类似的电影: 返回结果如下: 分析: 确定用户Angelica 找出用户评过分的电影m 把被评分的电影的流派找出来(g:Genre) 通过流派g再返回去搜索属于该流派的电影 (rec: … 继续阅读 Neo4j 做推荐 (5)—— 基于类型的个性化建议